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MODEL OF THE PENETRATION OF AN UPPER UNIFORM LAYER 

INTO A STRATIFIED FLUID 

V. Yu. Lyapidevskii UDC 532.526;551.465 

We study an integral model of the penetration of a uniform layer of fluid under the ac- 
tion of a tangential stress applied to the surface. The conservation equations for mass, 
momentum, and energy are closed by the penetration law of the nonmoving fluid into the upper 
uniform layer. An important feature of our model is that the nonuniformity of the velocity 
field due to the presence of "free" vortices in the flow is taken into account. 

Two penetration regimes are identified: a subcritical regime, where the penetration 
of the fluid into the layer occurs because of externally induced turbulence of the uniform 
layer, and a supercritical regime in which turbulence at the surface is transported by large- 
scale vortices generated by a flow instability with a velocity shear. It is shown that for 
an initial bilayered density distribution, and also in the case of a continuous density dis- 
tribution following a power law, there exist singular solutions of the system of equations 
corresponding to the supercritical penetration regime, and these solutions determine the asymp- 
totic behavior at large times. These solutions are characterized by the constancy of the 
global Richardson number Riu, calculated with respect to the mean values of the buoyancy and 
velocity of the upper layer. Hence the hypothesis Riu = const used in several models [i] to 
close the momentum equation is correct asymptotically in the framework of our model. Inclu- 
sion of the lateral friction for flow in a channel of finite width destroys the asymptotic 
form of the penetration and the solution is transformed into the subcritical regime. Com- 
parison with experimental results in circular troughs shows that our model gives a satisfac- 
tory description of the supercritical penetration for a bilayer [2] and for a continuous ini- 
tial density distribution [3]. 

The process of mixing in the flow of a stably stratified fluid is a complex and important 
problem. Transport of momentum and heat from the surface into the bulk of the ocean deter- 
mines the formation and time behavior of the upper thermocline. The transport mechanism is 
related to the development of instabilities in the shear flow and to turbulent exchange be- 
tween layers of different densities. An adequate mathematical description of the formation 
and structure of the upper layer of the ocean is possible only with the use of turbulent models 
[4]. However, for a certain class of flows a simple integral model can be used which gives 
the time behavior of the average quantities, which completely characterize this class of flow. 

In experiments and in observations it is noted that a stress applied to the surface of 
a stratified fluid at rest leads to a well-mixed layer with a nearly constant velocity and 
density and the layer is separated from the unperturbed nonmoving fluid by a thin transition 
layer where there are large gradients. In an idealized formulation of the problem, one as- 
sumes that the layer is uniform and has density ~(t), and a horizontal component of the veloc- 
ity u(t) (the only component which is nonzero), and the small-scale motion extends to a depth 
h(t) with intensity q(t) (Fig. i, region I). Below the line y = -h(t) there is the nonmoving 
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Fig. I 

stratified fluid [u ~ = 0, q0 = 0, p = p0(y), dp0/dy < 0, region II]. A given stress ~ = ~*(t) 
is applied to the surface layer (y = 0). The mass flux through the surface is zero. This 
model describes the process of penetration of the uniform turbulent layer under the action 
of a surface stress (e.g., wind). 

The integral model has been applied with success by many authors to describe the dynam- 
ics of the upper layer of the ocean [5, 6]. Besides its simplicity, this approach is at- 
tractive because in deriving the dynamical equations of the uniform layer one can do without 
the closure hypothesis, which is an integral part of the turbulent mixing models. However, 
in order to close the conservation equations for mass, momentum, and energy, it is necessary 
to specify a law for the penetration of the nonmoving fluid into the uniform layer. 

The following mixing law is widely used in oceanography and meteorology: 

d h / d t  = B u * / R i , ~  (1)  

where Ri = (p~ - p)gh/p0~*; u* = ~ is the frictional velocity, g is the acceleration 
of gravity, P0 is the initial density of the fluid at the surface. The dependence (i) is 
based on the results of laboratory experiments in circular troughs with linear initial strati- 
fication (B ~ 2.5) [3], and also similar experiments [2] for bilayer stratification. More 
recent analysis of the experiments in circular troughs has shown [i] that good results are 
obtained when the equations are closed by the relation 

Ri~ = (p~ - -  p ) g h / p o u  2 ~ const. (2)  

Here Riu i s  t h e  g l o b a l  R i c h a r d s o n  number,  c a l c u l a t e d  w i t h  r e s p e c t  t o  t h e  mean v a l u e s  o f  t h e  
b u o y a n c y  and v e l o c i t y  o f  t h e  upper  l a y e r .  The dependence  (2)  l e a d s  t o  a d i f f e r e n t  p e n e t r a -  
t i o n  law t h a n  in  ( 1 ) ,  

R{1/~ Ri--II2~j* 
d h / d t  = n ~ L ~  . . . .  (3)  

w i t h  n = 1 f o r  a b i l a y e r  s t r a t i f i c a t i o n  and n = �89 f o r  l i n e a r  s t r a t i f i c a t i o n .  In  [1] i t  was 
assumed t h a t  Riu ~ 0 . 6 .  However,  in  t h e  e x p e r i m e n t s  o f  [7] p e r f o r m e d  in  a c i r c u l a r  t r o u g h ,  
i t  was shown t h a t  t h e  dependence  (2)  i s  n o t  s a t i s f i e d  in a l l  c a s e s  and Riu  can become s i g -  
n i f i c a n t l y  l a r g e r  t h a n  u n i t y .  

The model  p r e s e n t e d  below i s  ba sed  on t h e  c o n s e r v a t i o n  laws of  mass ,  momentum, and e n e r g y  
and r e f l e c t s  t h e  f a c t  t h a t  in  t h e  s u p e r c r i t i c a l  r eg ime  t h e  n o n u n i f o r m i t y  o f  t h e  v e l o c i t y  q 
i s  c o u p l e d  n o t  o n l y  w i t h  t h e  t u r b u l e n c e  i nduced  in  t h e  f low b e c a u s e  o f  t h e  e x t e r n a l  s t r e s s ,  
bu t  a l s o  on a c c o u n t  o f  i n t e r n a l  i n s t a b i l i t i e s  o f  t h e  s h e a r  f l ow .  The p e n e t r a t i o n  law of  t h e  
l a y e r  i s  d e t e r m i n e d  by t h e  i n t e n s i t y  o f  s m a l l - s c a l e  m o t i o n  and i s  w r i t t e n  in  t h e  form 

d h / d t  = A q / R i .  ( 4 )  

The model  c o n s i d e r e d  h e r e  combines  t h e  p o s t u l a t e s  o f  t h e  model  o f  [3] w i t h  t h e  c o n c l u s i o n s  
o f  [ 1 ] .  The e s s e n c e  o f  t h e  model  i s  as  f o l l o w s .  I n  t h e  a b s e n c e  o f  l a t e r a l  f r i c t i o n  t h e r e  
i s  a c l a s s  o f  i n i t i a l  p r o f i l e s  p0 (y )  ( i n c l u d i n g  t h e  b i l a y e r e d  [2] and l i n e a r  s t r a t i f i c a t i o n  
[3] c a s e s )  in  which  t h e r e  e x i s t  s i n g u l a r  s o l u t i o n s  o f  t h e  sy s t em of  c o n s e r v a t i o n  e q u a t i o n s  
f o r  mass ,  momentum, and e n e r g y  p l u s  Eq. ( 4 ) .  These s o l u t i o n s  a r e  c h a r a c t e r i z e d  by t h e  
p r o p e r t y  Riu = c o n s t  and a r e  t h e  a s y m p t o t i c  l i m i t  ( t  § ~) o f  o t h e r  s o l u t i o n s  o f  t h e  sys t em.  
For  f l ow in  c h a n n e l s  o f  f i n i t e  w i d t h  t h e  f r i c t i o n  a t  t h e  l a t e r a l  b o u n d a r i e s  l e a d s  t o  a change  
in  t h e  a s y m p t o t i c  b e h a v i o r  o f  t h e  s o l u t i o n s .  

Le t  t h e  u n i f o r m  l a y e r  have  d e n s i t y  p+, v e l o c i t y  u +, and d e p t h  h0 a t  t = 0. For  s i m p l i c i t y  
we assume t h a t  t h e  b u o y a n c y  b ~  = (p-  - P0)g/P0 in  t h e  lower  l a y e r  i s  d i s t r i b u t e d  a c c o r d i n g  
t o  a power law (v ~ c o n s t  > 0) 
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b~ = b- @ v(--g)e, g < --ho. (5 )  

The d e p e n d e n c e  (5 )  i n c l u d e s  two i m p o r t a n t  s p e c i a l  c a s e s :  a b i l a y e r e d  l i q u i d  (v  = O, b-  > b +) 
and l i n e a r  s t r a t i f i c a t i o n  (X = 1, h0 = 0 ) .  

The d y n a m i c a l  e q u a t i o n s  o f  t h e  u n i f o r m  l a y e r  in  t h e  B o u s s i n e s q u e  a p p r o x i m a t i o n  ( I P  - 
P01 << P0) a r e  o b t a i n e d  f rom t h e  c o n s e r v a t i o n  laws o f  momentum, e n e r g y ,  and mass  a f t e r  i n t e -  
g r a t i o n  w i t h  r e s p e c t  t o  y f rom z e r o  t o  a c e r t a i n  v a l u e  Y0, where  Y0 < - h ( t ) .  On t h e  bound-  
a r i e s  y = 0 and y = Y0 t h e  R e y n o l d s  s t r e s s  and t h e  m a s s . f l u x  a r e  assumed t o  be  g i v e n :  

T $ U'U' ---7--7[ , , 

Here  u ' ,  v ' ,  p '  a r e  t h e  f l u c t u a t i n g  c o m p o n e n t s  o f  t h e  v e l o c i t y  v e c t o r  and d e n s i t y .  The i n -  
t e g r a t e d  e q u a t i o n s  o f  m o t i o n  h a v e  t h e  fo rm [5] 

dhu/dt = ~*,; 

d---/- (t/2) u~h + (t/2) q~-h + yd = "~*~ - -  eh, 

~'-d-(idt o bdy) = O, 

(6) 

where u(t) is the mean horizontal velocity 

q(t) = (u2(t,g) + v~(t,g) + w2(t,g))dg-- u2) 
-h 

and characterizes the nonuniformity of the velocity field due to small-scale motion. Terms 
including correlations of the pressure and velocity and also averages of triple products of 
the fluctuating components of the velocity at y = 0 are assumed to he small and are omitted 
in the energy equation. The quantity e describes energy dissipation. Because q measured 
the nonuniformity of the flow due to fluctuating motion of all scales, one can put e = 0 if 
we ignore thermal dissipation of energy. 

The equations (6) are closed by the penetration law (4) which has a simple interpreta- 
tion: the rate of increase of the potential energy V on account of mixing of the fluids is 
proportional to the energy of the vortices formed under the action of the surface stress 

dV/dt = (i/2)(b~ -- b)h(dMdt) = (i/2)nT*q. (7) 

The relation (7) differs from the expression for the rate of change of the potential energy 
used in [3] in the derivation of the law (I) by the fact that the velocity of vertical trans- 
port of vortices is determined not only by the friction velocity u*, but also by the mean-square 
fluctuation velocity q generated by the internal shear instability. 

With the help of (5), system (4) and (6) can be rewritten in the form 

dh/dt = ~q, hdh/dt = T * - - ~ q ~  hqdq/dt= (aq/2) (~2--q~--c f )~  (8 )  

where c 2 = (b- - b+)h0 + (9/(y + i))/h7+I0 + (7v/(7 + l))hT+h o = h/Ri; Ri = x*/c 2. The den- 
sity of the layer p is eliminated from the equations by integration of the conservation of 
mass law. The quantity qf, characterizing the nonuniformity of the velocity field, is composed 
of the energy of the vortices qi 2 generated within the flow, and the kinetic energy qe 2 of 
vortices generated on the upper boundary. The value of qe is proportional to u*, i.e., qe = 
au*, a = a(h), and a~ a 0 if one does not take into account the scattering of the vortex energy 
with increasing depth of the mixed layer. Therefore the energy equation describes the gener- 
ation of the energy of "free vortices" qi 2 in the shear flow. If qi goes to zero and the deriv- 
ative dq/dt is negative, then the increase in kinetic energy on account of the internal redis- 
tribution of the flow is completely cancelled by the change of potential energy and "free 
vortices" do not exist in the flow. In this case the energy equation can be replaced by the 
relation q E qe. Because the quantity qe is much less than qi in the supercritical flow case 
(dq/dt > O) the rate of penetration of the uniform layer significantly depends on which flow 
regime is realized. 

198 



3" I 

I 

Fig. 2 

We consider the bilayered and continuous initial stratification cases separately. 

Bilayer Model. Let v = 0. In this case, c = const, and if the depth of the channel 
H ~ ~, then c is the propagation velocity of long internal waves. In the (x, z) plane (x = 
q/c, z = u/c) the trajectories of the system (8) are coincident with the integral curves of 
the equation 

d z / d x  = [2(1 - -  A x z ) l / [ A ( z  2 - -  x 2 - -  l)] .  ( 9 )  

The stationary point of (9) is found from the intersection of the curves Axz = 1 and z 2 = 
x 2 + 1 (Fig. 2, curves 1 and 2, respectively). 

In the region x > 0, z > 0, there exists a unique singular point (x, z) of Eq. (9) which 
is a stable focus. When x* = const the stationary point (~, ~) determines the equilibrium 
]penetration law 

d h / d t  = A ~ R i ,  u = ~, q = q  ( 1 0 )  

with Riu ~ const. Any trajectory in the neighborhood of the singular solution (i0) is drawn 
in toward it (Fig. 2, curve 3) so that flow with Riu ~ const is realized in the limit t + ~. 

If the stress ~* is applied to a nonmoving bilayered fluid (u ~ = 0, q0 = 0) at t = 0 
then one can identify three phases in the solution for the penetration of the uniform layer: 
an acceleration of the upper layer with q ~ qe, u 2 < q2 + c 2, a nonmonotonic increase of the 
velocity and a transition into the asymptotic regime of equilibrium penetration. Of particu- 
lar interest is the middle phase of the motion and it can be shown that even in the absence 
of lateral friction the velocity in the upper layer varies nonmonotonically. It is seen from 
Fig. 2 that flow with Riu < i is realized asymptotically and the quantity RiuJt+~ ~ Riu weak- 
ly depends on the choice of the constant A if 1 ~ A ~ ~. Indeed, 

Ri~ = 2/(1 + J f f t  + 4 ~ ) .  ( 1 1 )  

When A = 1, Riu = 2/(1 + r ~ 0.618 which is consistent with the use of this value from the 
experimental data in [i]. It is shown below that the value A = i also corresponds to the 
experimental results for the case of linear initial stratification. 

Linear Stratification. Let ~ = i, h 0 = 0, i.e., c 2 = c2(h) = �89 2, Ri = T*/c 2, a = ARi -I. 
The system (18) is homogeneous and reduces to an autonomous system. In the (x, z) plane (x = 
q/c, z = u/c) the trajectories of the system (8) are coincident with the integral curves of 
the equation 

d z / d x  = [2(1 - -  2 A x z ) l / [ A ( z  2 - -  3x  2 - -  1)]. ( 1 2 )  

The singular point of (12) is determined from the intersection of the curves 2hxz = 1 and 
z 2 = 3x 2 + i. As in the case of bilayer stratification, in the region x > 0, z > 0 there 
exists a unique stationary point (x, z) which is a stable focus. The stationary point deter- 
mines the singular solution of the system (8) 

h = h t  ~/2, u = u t  ~I~, q = ~ t  ~/2, ( 1 3 )  

w h e r e  ~ = ( ] / Z ~ * / l f T ~ ' / 2 ;  7 =  Y @ 2 h .  The s o l u t i o n  ( 1 3 )  i s  an e x a c t  s o l u t i o n  f o r  t h e  p e n e t r a -  
t i o n  of a uniform upper layer (x* ~ const) into an initially nonmoving (u ~ = 0, q0 = 0) linear- 
ly stratified fluid; it is characterized by the relation 
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Riu= c2/~ 2 = const. 

Hence the flow realized in [3] is described by the singular solution (13). In Fig. 3, experi- 
mental data is shown for the thickness of the uniform layer as a function of time, obtained 
in [3] for ~ = 1.98 sec -2, T* = 0.995 cm2/sec 2 (points i) and v = 3.84 sec -2, T* = 2.12 cm2/ 
sec 2 (points 2). The solid curves correspond to the exact solution (13). In the portions 
of the curves where the effect of friction at the lateral boundaries of the trough can be 
neglected, the experimental dependence is described by the solution (13). 

The effect of the constant A on the singular solution (13) is insignificant when 1 ~ A 
~, as in the case of a bilayered fluid (~ = 0). In the solution (13) the quantity Riu can be 
expressed in terms of A, as follows: 

Ri~ = 2 / ( V I  + 3A -2 + 1). 

F o r  h = 1 ,  R i u  = 2 / 3  a n d  d i f f e r s  o n l y  s l i g h t l y  f r o m  t h e  l i m i t i n g  v a l u e  R i u  ~ 0 . 5 1 8  f o r  v = 0.  
The  d e p e n d e n c e  o f  t h e  f u n c t i o n  h = h ( t )  [ i n  ( 1 3 ) ]  on A i s  e v e n  w e a k e r  b e c a u s e  

h = [(2/v)Ri~]l/4(~*t)V2 

a n d  2 / 3  5 R i u  < 1 when 1 5 A < ~ .  T h e r e f o r e ,  s y s t e m  ( 8 )  w i t h  t h e  v a l u e  A = 1 g i v e s  a s a t i s -  
f a c t o r y  d e s c r i p t i o n  o f  t h e  p e n e t r a t i o n  o f  a u n i f o r m  l a y e r  f o r  b o t h  l i n e a r  a n d  b i l a y e r e d  i n i t i a l  
s t r a t i f i c a t i o n .  

N o t e .  h c o n t i n u o u s  i n i t i a l  s t r a t i f i c a t i o n  (h0 = 0 )  w i t h  an  a r b i t r a r y  p o w e r  l a w  d e p e n d -  
e n c e  ( 5 )  o f  t h e  d e n s i t y  on d e p t h  i s  t r e a t e d  i n  a s i m i l a r  way .  I n  t h i s  c a s e  t h e  s y s t e m  ( 8 )  
r e d u c e s  t o  an  a u t o n o m o u s  s y s t e m  i n  t h e  ( x ,  z )  p l a n e ,  w h e r e  x = q / c ,  z = u / c ,  a n d  R i u  = c o n s t  
f o r  t h e  s i n g u l a r  s o l u t i o n  o f  ( 8 ) .  

F o r  a c h a n n e l  o f  f i n i t e  w i d t h  i t  i s  n e c e s s a r y  t o  t a k e  i n t o  a c c o u n t  f r i c t i o n  a t  t h e  l a t -  
e r a l  w a l l s .  The  s y s t e m  ( 8 )  i n  t h i s  c a s e  d e s c r i b e s  t h e  t i m e  b e h a v i o r  o f  t h e  u n i f o r m  l a y e r  
i f  t h e  s u r f a c e  s t r e s s  ~* i s  r e p l a c e d  b y  an  " e f f e c t i v e "  s t r e s s  �9 = z* - ~w, w h e r e  ~w = c w h u i L  - 1 ,  
cw i s  t h e  c o e f f i c i e n t  o f  f r i c t i o n ,  a n d  L i s  t h e  w i d t h  o f  t h e  c h a n n e l  [ 1 ] .  

L e t  Cw ~ c o n s t  # 0 .  The  a s y m p t o t i c  p r o p e r t y  o f  t h e  s o l u t i o n s  o f  ( 8 )  d i s c u s s e d  a b o v e  i s  
now n o t  c o r r e c t ,  b e c a u s e  w i t h  i n c r e a s i n g  h a n d  u t h e  q u a n t i t y  ~w b e c o m e s  c o m p a r a b l e  t o  <*.  I n  
s t u d y i n g  t h e  b e h a v i o r  o f  t h e  t r a j e c t o r i e s  ( 8 )  i t  i s  c o n v e n i e n t  t o  c o n s i d e r  t h e i r  p r o j e c t i o n s  
o n t o  t h e  ( h ,  u )  p l a n e ,  h t r a j e c t o r y  h = h ( t ) ,  u = u ( t )  ( F i g .  4 ,  c u r v e  1)  c a n n o t  i n t e r s e c t  
t h e  l i n e  < = ~* - c w L - l h u  2 = 0 ( c u r v e  2 )  b e c a u s e  t h e  t r a j e c t o r i e s  o f  t h e  s y s t e m  ( 8 )  l i e  o u t -  
s i d e  o f  t h i s  c u r v e  i n  t h e  r e g i o n  �9 > 0 .  T h e r e f o r e ,  when t + ~ ,  u ( t )  + 0 and  t h e  s o l u t i o n  
m u s t  become  s u b c r i t i c a l  ( u  2 < qe  2 + c 2) a n d  t h i s  l e a d s  t o  a s i g n i f i c a n t  c h a n g e  i n  t h e  p e n e t r a -  
t i o n  rate of the layer. 

In the experimental results for a bilayer in a circular trough [2] the effect of the 
lateral friction is much stronger than in the experiments of [3] (see Fig. 3). When Ri $ i00 
(in [2]) the acceleration phase of the upper layer was realized and the system passed into 
the supercritical penetration regime. When Ri ~ 500, the flow remained subcritical the entire 
time which led to a sharp decrease in the penetration rate of the uniform layer. The hypoth- 
esis that q = qe = a 0u* for subcritical flow corresponds more to the plane-parallel case. In 
an annular trough the nonuniformity of the velocity field is due not only to turbulence in- 
duced in the fluid by the moving baffle but also by the presence of radial motion [7]. There- 
fore, in order to correctly describe subscritical flow in an annular trough, more detailed 
information is necessary on the structure of the flow. In the supercritical case the flow 
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geometry is less important because the nonuniformity of the flow due to the generation of 
large vortices in the shear layer dominates over nonuniformities arising from other mechan- 
isms. 

The hypothesis that the average velocity and density profiles are uniform along the ver- 
tical in the upper layer is a rather crude approximation. In actual fact, the well-mixed 
layer is separated from the nonmoving fluid by a layer whose thickness can be a significant 
fraction of that of the upper layer. Nevertheless, the model considered here gives not only 
qualitative agreement with observation, but also quantitative agreement. Apparently this 
can be explained by the fact that the transition layer is dynamically neutral, i.e., in this 
layer the kinetic energy of the fluctuating motion produced by the redistribution of the flow 
is dissipated in overcoming buoyancy forces. Therefore the quantity q2 in (8) is the differ- 
ence of the kinetic and potential energies of the flow due to the nonuniformity of the flow, 
i.e., the "free" energy of the vortices, and is not cancelled by the increase in the buoyancy. 
Hence (8) describes formally the the time behavior of the upper layer with a transition zone 
if h is interpreted as the distance from the surface of the fluid to the middle of the transi- 
tion layer. The inclusion of dissipation parametrized by an expression of the form e = kq3h -l 
does not change the qualitative behavior of the solutions of the system (8). 
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